Lớp 8

Giải SBT Toán hình 8 trang 95, 96 tập 1 Bài 10 chi tiết nhất

Giải sách bài tập Toán hình 8  trang 95, 96 tập 1 Bài 10: Đường thẳng song song với một đường thẳng cho trước được giải đáp chi tiết và rõ ràng nhất, giúp cho các bạn học sinh có thể tham khảo và chuẩn bị tốt nhất cho bài học sắp tới nhé.

Giải bài 124 SBT Toán hình lớp 8 tập 1 trang 95

Cho đoạn thẳng AB, kẻ tia Ax bất kỳ, lấy các điểm C, D, E sao cho AC = CD = DE. Qua C, D kẻ đường thẳng song song với BE. Chứng minh rằng đoạn thẳng AB bị chia ra ba phân bằng nhau.

Lời giải:

Bạn đang xem: Giải SBT Toán hình 8 trang 95, 96 tập 1 Bài 10 chi tiết nhất

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi giao điểm của các đường thẳng kẻ từ C và D song song với BE cắt AB tại M và N.

Ta có: AC = CD = DE (gt)

CM // DN // BE

Theo tính chất đường thẳng song song cách đều, ta có:

AM = MN = NB

Giải bài 125 trang 95 SBT lớp 8 Toán hình tập 1

Cho góc vuông xOy, điểm A nằm trên tia Oy, điểm B di chuyển trên tia Ox. Gọi C là điểm đối xứng với A qua B. Điểm C di chuyển trên đường nào?

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì điểm C đối xứng với điểm A qua điểm B nên BA = BC

Kẻ CH ⊥ Ox

Xét hai tam giác vuông AOB và CHB, ta có:

∠(AOB) = ∠(CHB ) = 90o

BA = BC ( chứng minh trên)

∠(ABO ) = ∠(CBH) ( đối đỉnh)

Suy ra ΔAOB = Δ CHB ( cạnh huyền, góc nhọn)

⇒ CH = AO

Vì A, O cố định nên OA không đổi suy ra CH không đổi

Vì C thay đổi cách Ox một khoảng bằng OA không đổi nên C chuyển động trên đường thẳng song song với Ox, cách Ox một khoảng bằng OA.

Khi B trùng O thì C trùng với điểm K đối xứng với A qua điểm O.

Vậy C chuyển động trên tia Kz // Ox, cách Ox một khoảng không đổi bằng OA.

Giải bài 126 Toán hình lớp 8 SBT trang 96 tập 1

Cho tam giác ABC, điểm M di chuyển trên cạnh BC. Gọi I là trung điểm của AM. Điểm I di chuyển trên đường nào?

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Kẻ AH ⊥ BC,IK ⊥ BC ⇒ AH // IK

Trong ΔAHM, ta có:

AI = IM (gt)

IK // AH ( chứng minh trên)

Suy ra IK là đường trung bình của ΔAHM

⇒ IK = 1/2 AH

ΔABC cố định nên AH không thay đổi ⇒ IK = 1/2 AH không đổi.

I thay đổi cách BC một khoảng bằng AH/2 không đổi nên I nằm trên đường thẳng song song với BC, cách BC một khoảng bằng AH/2

Khi M trùng với điểm B thì I trùng với điểm P là trung điểm của AB.

Khi M trùng với điểm C thì I trùng với điểm Q là trung điểm của AC.

Vậy khi M di chuyển trên cạnh BC của ΔABC thì trung điểm I của AM chuyển động trên đường trung bình PQ của ΔABC

Giải bài 127 trang 96 tập 1 SBT Toán hình lớp 8

Cho tam giác ABC vuông tại A, điểm M thuộc cạnh BC. GỌi D,E theo thứ tự là chân đường vuông góc kẻ từ M đến AB, AC.

a. So sánh độ dài AM, DE.

b. Tìm vị trí của điểm M trên cạnh BC để DE có độ dài nhỏ nhất

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

a. Xét tứ giác ADME, ta có:

∠A = 90o (gt)

MD ⊥ AB (gt)

⇒ ∠(MDA ) = 90o

ME ⊥ AC (gt)

⇒ ∠(MEA ) = 90o

Suy ra tứ giác ADME là hình chữ nhật ( vì có ba góc vuông)

⇒ AM = DE ( tính chất hình chữ nhật)

b. Ta có: AH ⊥ BC nên AM ≥ AH (quan hệ đường vuông góc và đường xiên)

Dấu “=” xảy ra khi M trùng với H

Mà DE = AM ( chứng minh trên)

Vậy DE có độ dài nhỏ nhất bằng AH khi M là chân đường vuông góc kẻ từ A đến BC

Giải bài 128 SBT Toán hình trang 96 tập 1 lớp 8

Cho điểm A nằm ngoài đường thẳng d. Điểm M di chuyển trên đường thẳng d. Gọi B là điểm đối xứng với A qua M. Điểm B di chuyển trên đường nào?

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Kẻ AK ⊥ d,BH ⊥ d

Vì M thay đổi trên d, B đối xứng với A qua M nên AM = MB

Xét tam giác vuông AKM và BHM. Ta có: ∠(AKM ) = ∠(BHM ) = 90o

AM = MB ( chứng minh trên)

∠(AMK ) = ∠(BMH ) ( đối đỉnh)

Do đó ΔAKM = ΔBHM ( cạnh huyền,góc nhọn) ⇒ AK = BH

Điểm A cố định, đường thẳng d cố định nên AK không đổi.

M thay đổi, B thay đổi cách đường thẳng d cố định một khoảng bằng AK không thay đổi nên B chuyển động trên đường thẳng xy song song với d và cách d một khoảng bằng AK.

Giải bài 129 Toán hình SBT lớp 8 trang 96 tập 1

Cho đoạn thẳng AB, điểm M di chuyển trên đoạn thẳng ấy. Vẽ về một phía của AB các tam giác đều AMD, BME. Trung điểm I của DE di chuyển trên đường nào?

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi C là giao điểm của AD và BE.

Tam giác ABC có:

      ∠A = 60o (vì ΔADM đều)

       ∠B = 60o ( vì ΔBEM đều)

Nên ∠C = 180o – ∠A – ∠B = 60o

Suy ra: ΔABC đều hay AB = AC = BC

Suy ra điểm C cố định.

Lại có: ∠A = ∠(EMB ) = 60o

ME // AC ( vì có cặp góc đồng vị bằng nhau)

Hay ME // CD.

Do ∠DMA = ∠BEM = 60o ( hai tam giác AMD và BME là tam giác đều )

Suy ra: MD // BC ( vì có cặp góc so le trong bằng nhau ).

hay MD // EC

suy ra tứ giác CDME là hình bình hành.

I là trung điểm của DE nên I là trung điểm của CM

Kẻ CH ⊥ AB,IK ⊥ AB⇒IK // CH

Trong ΔCHM,ta có:CI = IM và IK // CH

Suy ra IK là đường trung bình của ΔCHM⇒IK = 1/2 CH

Vì C cố định nên CH không đổi ⇒ IK = 1/2 CH không đổi nên I chuyển động trên đường thẳng song song với AB, cách AB một khoảng bằng 1/2 CH

Khi M trùng với A thì I trùng với trung điểm P của AC.

Khi M trùng với B thì I trùng với trung điểm Q của BC.

Vậy khi M chuyển động trên đoạn thẳng AB thì I chuyển động trên đoạn PQ ( P là trung điểm AC, Q là trung điểm BC).

Giải bài 130 lớp 8 SBT Toán hình tập 1 trang 96

Hình chữ nhật ABCD có cạnh AD bằng nửa đường chéo AC. Tính góc nhọn tạo bới hai đường chéo.

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là giao điểm của hai đường chéo AC và BD.

Ta có: AC = BD ( tính chất hình chữ nhật) ⇒ OA = OD = 1/2 AC

Lại có: AD = 1/2 AC (gt)

Suy ra: OA = OD = AD

⇒ ΔOAD đều ⇒∠(AOD ) = 60o

Giải bài 131 trang 96 Toán hình tập 1 lớp 8 SBT

Dựng hình chữ nhật ABCD biết đường chéo AC = 4cm, góc tạo bởi hai đường chéo bằng 100o.

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Cách dựng:

– Dựng ΔOAB biết OA = OB = 2cm, ∠(AOB ) = 100o

– Trên tia đối tia OA dựng điểm C sao cho OC = OA = 2cm

– Trên tia đối tia OB dựng điểm D sao cho OD = OB = 2cm

Nối AD, BC, CD ta có hình chữ nhật ABCD cần dựng

* Chứng minh:

Ta có: OA = OC, OB = OD

Suy ra tứ giác ABCD là hình bình hành.

Vì AC = BD = 4 (cm) nên hình bình hành ABCD là hình chữ nhật.

►► CLICK NGAY vào nút TẢI VỀ dưới đây để download Giải sách bài tập Toán hình lớp 8 tập 1  trang 95, 96 file word, pdf hoàn toàn miễn phí.

Giải SBT Toán hình lớp 8 trang 95, 96 tập 1 Bài 10 đầy đủ hỗ trợ các em học sinh củng cố kiến thức và hiểu rõ phương pháp giải các dạng bài tập trong sách bài tập

Đăng bởi: Trường THCS Trương Công Thận

Chuyên mục: Lớp 8

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Back to top button

Bạn đang dùng trình chặn quảng cáo!

Bạn đang dùng trình chặn quảng cáo!