Lớp 8

Giải Toán lớp 8 trang 50, 51 SGK tập 2 chính xác nhất

Hướng dẫn giải sách giáo khoa Toán lớp 8 trang 50, 51 tập 2 bài: Phương trình chứa dấu giá trị tuyệt đối đầy đủ, chi tiết nhất. Hy vọng với tài liệu này sẽ giúp ích cho các bạn học sinh tham khảo, chuẩn bị cho bài học sắp tới được tốt nhất.

Trả lời câu hỏi SGK Toán 8 tập 2 trang 50

Rút gọn các biểu thức:

a) C = |-3x| + 7x – 4 khi x ≤ 0;

Bạn đang xem: Giải Toán lớp 8 trang 50, 51 SGK tập 2 chính xác nhất

b) D = 5 – 4x + |x – 6| khi x < 6.

Lời giải

a) x ≤ 0 nên – 3x ≥ 0 ⇒ |-3x| = -3x

Vậy C = |-3x| + 7x – 4 = -3x + 7x – 4 = 4x – 4

b) x < 6 nên x – 6 < 0 ⇒ |x – 6| = -(x – 6) = 6 – x

Vậy D = 5 – 4x + |x – 6| = 5 – 4x + 6 – x = 11 – 5x

Trả lời câu hỏi Toán SGK lớp 8 tập 2 trang 51

Giải các phương trình:

a) |x + 5| = 3x + 1;

b) |-5x| = 2x + 21.

Lời giải

a) Với x ≥ -5 thì x + 5 ≥ 0 nên |x + 5| = x + 5

x + 5 = 3x + 1 ⇔ 2x = 4 ⇔ x = 2 (thỏa mãn điều kiện x ≥ -5)

Với x < -5 thì x + 5 < 0 nên |x + 5| = – (x + 5) = – x – 5

-x – 5 = 3x + 1 ⇔ 4x = -6 ⇔ x = frac{-3}{2}(không thỏa mãn điều kiện x ≤ -5)

Vậy tập nghiệm của bất phương trình |x + 5| = 3x + 1 là S = {2}

a) Với x ≥ 0 thì – 5x ≤ 0 nên |-5x| = -(-5x) = 5x

|-5x|= 2x + 21 ⇔ 5x = 2x + 21

⇔ 3x = 21 ⇔ x = 7 (không thỏa mãn điều kiện x ≥0)

Với x < 0 thì – 5x > 0 nên |-5x| = -5x

|-5x|= 2x + 21 ⇔ -5x = 2x + 21

⇔ -7x = 21 ⇔ x = -3 (thỏa mãn điều kiện x < 0)

Vậy tập nghiệm của bất phương trình |-5x|= 2x + 21 là S = {-3}

Giải bài 35 trang 51 SGK Toán tập 2 lớp 8

Bỏ dấu giá trị tuyệt đối và rút gọn các biểu thức:

a) A = 3x + 2 + |5x| trong hai trường hợp: x ≥ 0 và x < 0;

b) B = |-4x| – 2x + 12 trong hai trường hợp: x ≤ 0 và x > 0;

c) C = |x – 4| – 2x + 12 khi x > 5;

d) D = 3x + 2 + |x + 5|.

Ghi nhớ

(Trước khi đi vào lời giải, bạn cần ghi nhớ: Trị tuyệt đối của một số không âm bằng chính nó; Trị tuyệt đối của một số âm bằng số đối của nó.

Ví dụ:

|5x| = 5x khi x ≥ 0

|5x| = -5x khi x < 0)

Lời giải:

(Bài dưới được trình bày dựa theo cách trình bày ở Ví dụ 1 trang 50 sgk Toán 8 Tập 2. Bạn có thể rút gọn nếu bạn thích.)

a) – Khi x ≥ 0 ta có 5x ≥ 0 nên |5x| = 5x

Vậy A = 3x + 2 + 5x = 8x + 2

– Khi x < 0 ta có 5x < 0 nên |5x| = -5x

Vậy A = 3x + 2 – 5x = -2x + 2

b) – Khi x ≤ 0 ta có -4x ≥ 0 (nhân hai vế với số âm) nên |-4x| = -4x

Vậy B = -4x – 2x + 12 = -6x + 12

– Khi x > 0 ta có -4x < 0 nên |-4x| = -(-4x) = 4x

Vậy B = 4x – 2x + 12 = 2x + 12

c) – Khi x > 5 ta có x – 4 > 1 (trừ hai vế cho 4) hay x – 4 > 0 nên |x – 4| = x – 4

Vậy C = x – 4 – 2x + 12 = -x + 8

d) D = 3x + 2 + x + 5 khi x + 5 ≥ 0

hoặc D = 3x + 2 – (x + 5) khi x + 5 < 0

Vậy D = 4x + 7 khi x ≥ -5

hoặc D = 2x – 3 khi x < -5

Giải bài 36 SGK Toán lớp 8 trang 51 tập 2

Giải các phương trình:

a) |2x| = x – 6 ; b) |-3x| = x – 8

c) |4x| = 2x + 12 ; d) |-5x| – 16 = 3x

Lời giải:

a) |2x| = x – 6 (1)

Ta có: |2x| = 2x khi 2x ≥ 0 hay x ≥ 0

|2x| = -2x khi 2x < 0 hay x < 0.

Vậy phương trình (1) tương đương với:

+ 2x = x – 6 với điều kiện x ≥ 0

2x = x – 6 ⇔ x = -6

Giá trị x = -6 không thỏa mãn điều kiện x ≥ 0 nên không phải nghiệm của (1)

+ -2x = x – 6 với điều kiện x < 0

-2x = x – 6 ⇔ -3x = -6 ⇔ x = 2.

Giá trị x = 2 không thỏa mãn điều kiện x < 0 nên không phải nghiệm của (1).

Vậy phương trình (1) vô nghiệm.

b) |-3x| = x – 8 (2)

Ta có: |-3x| = -3x khi -3x ≥ 0 hay x ≤ 0.

|-3x| = -(-3x) = 3x khi -3x < 0 hay x > 0.

Vậy phương trình (2) tương đương với:

+ -3x = x – 8 với điều kiện x ≤ 0

-3x = x – 8 ⇔ -4x = -8 ⇔ x = 2

Giá trị x = 2 không thỏa mãn điều kiện x ≤ 0 nên không phải nghiệm của (2).

+ 3x = x – 8 với điều kiện x > 0

3x = x – 8 ⇔ 2x = -8 ⇔ x = -4.

Giá trị x = -4 không thỏa mãn điều kiện x > 0 nên không phải nghiệm của (2).

Vậy phương trình (2) vô nghiệm.

c) |4x| = 2x + 12 (3)

Ta có: |4x| = 4x khi 4x ≥ 0 ⇔ x ≥ 0

|4x| = -4x khi 4x < 0 hay x < 0.

Vậy phương trình (3) tương đương với:

+ 4x = 2x + 12 với điều kiện x ≥ 0

4x = 2x + 12 ⇔ 2x = 12 ⇔ x = 6.

Giá trị x = 6 thỏa mãn điều kiện x ≥ 0 nên là nghiệm của (3)

+ -4x = 2x + 12 với điều kiện x < 0

-4x = 2x + 12 ⇔ -6x = 12 ⇔ x = -2.

Giá trị x = -2 thỏa mãn điều kiện x < 0 nên là nghiệm của (3).

Vậy phương trình (3) có hai nghiệm x = 6 và x = -2.

d) |-5x| – 16 = 3x (4)

Ta có: |-5x| = -5x khi -5x ≥ 0 hay x ≤ 0.

|-5x| = -(-5x) = 5x khi -5x < 0 hay x > 0.

Vậy phương trình (4) tương đương với:

+ -5x – 16 = 3x với điều kiện x ≤ 0.

-5x – 16 = 3x ⇔ -5x – 3x = 16 ⇔ -8x = 16 ⇔ x = -2.

Giá trị x = -2 thỏa mãn điều kiện x ≤ 0 nên là nghiệm của (4).

+ 5x – 16 = 3x với điều kiện x > 0.

5x – 16 = 3x ⇔ 5x – 3x = 16 ⇔ 2x = 16 ⇔ x = 8

Giá trị x = 8 thỏa mãn điều kiện x > 0 nên là nghiệm của (4).

Vậy phương trình (4) có nghiệm x = -2 và x = 8.

Giải bài 37 trang 51 tập 2 SGK Toán lớp 8

Giải các phương trình:

a) |x – 7| = 2x + 3; b) |x + 4| = 2x – 5

c) |x+ 3| = 3x – 1; d) |x – 4| + 3x = 5

Lời giải:

a) |x – 7| = 2x + 3 (1)

Ta có: |x – 7| = x – 7 khi x – 7 ≥ 0 hay x ≥ 7.

|x – 7| = -(x – 7) = 7 – x khi x – 7 < 0 hay x < 7.

Vậy phương trình (1) tương đương với:

+ x – 7 = 2x + 3 khi x ≥ 7

x – 7 = 2x + 3 ⇔ x = -10.

Giá trị x = -10 không thỏa mãn điều kiện x ≥ 7 nên không phải nghiệm của (1).

+ 7 – x = 2x + 3 khi x < 7.

7 – x = 2x + 3 ⇔ 3x = 4 ⇔ x = 4/3

Giá trị x = 4/3 thỏa mãn điều kiện x < 7 nên là nghiệm của (1)

Vậy phương trình (1) có nghiệm x = 4/3.

b) |x + 4| = 2x – 5 (2)

Ta có: |x + 4| = x + 4 khi x + 4 ≥ 0 hay x ≥ -4.

|x + 4| = -(x + 4) = -x – 4 khi x + 4 < 0 hay x < -4.

Vậy phương trình (1) tương đương với:

+ x + 4 = 2x – 5 khi x ≥ -4

x + 4 = 2x – 5 ⇔ x = 9

Giá trị x = 9 thỏa mãn điều kiện x ≥ -4 nên là nghiệm của (2).

+ -x – 4 = 2x – 5 khi x < -4.

– x – 4 = 2x – 5 ⇔ 3x = 1 ⇔ x = 1/3

Giá trị x = 1/3 không thỏa mãn điều kiện x < -4 nên không phải nghiệm của (2)

Vậy phương trình (2) có nghiệm x = 9.

Giải bài tập SGK Toán lớp 8 bài 5: Phương trình chứa dấu giá trị tuyệt đối

Vậy phương trình có nghiệm Giải bài 23 trang 47 SGK Toán 8 Tập 2 | Giải toán lớp 8 .

►► CLICK NGAY vào nút TẢI VỀ dưới đây để giải toán lớp 8 SGK trang 50, 51 tập 2 file word, pdf hoàn toàn miễn phí.

Giải Toán lớp 8 trang 50, 51 SGK tập 2: Phương trình chứa dấu giá trị tuyệt đối, hỗ trợ các em học sinh củng cố kiến thức và hiểu rõ phương pháp giải các dạng bài tập trong sách giáo khoa

Đăng bởi: Trường THCS Trương Công Thận

Chuyên mục: Lớp 8

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Back to top button

Bạn đang dùng trình chặn quảng cáo!

Bạn đang dùng trình chặn quảng cáo!